
1

LAB 11 - ciLisp Final Project

John Dempsey

COMP-232 Programming Languages
California State University, Channel Islands

November 5, 2025
Final Due Date: December 12, 2025 @ 11:59 PM

In this project, you will implement an interpreter for CI LISP, a Channel Islands Lisp-like

language.

Each task below will expand the grammar. Your job is to expand the lexer, parser, data

structures, parsing methods, and evaluation methods to meet the new requirements.

The files provided will build and run (by running the “run” script), but isn't capable of

actually doing anything other than crashing or quitting.

Tasks

TASK 1 : Tokenization, Parsing and Evaluation of Cambridge Polish Notation arithmetic

TASK 2 : Symbol definition and evaluation

TASK 3 : Typecasting

TASK 4 : Conditionals, comparisons, read, random and print

TASK 5 : Composable, recursion-capable user-defined functions

Point Breakdown

• Task 1 50 points

• Task 2 20 points

• Task 3 10 points

• Task 4 10 points

• Task 5 10 points

Notes

1. After completing a task, you need to upload your program to LAB11/TASK#

on comp232.com so instructor can review your work.

https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_1.md
https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_2.md
https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_3.md
https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_4.md
https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_5.md

2

2. After completing one task, you need to copy your code from the previous

task and start with this code for the next task. Your code written for each

task needs to be found in your LAB11/TASK# directories.

3. You must be able to compile and run your code on comp232.com. If

instructor can’t compile and/or run your code on comp232.com, I can’t

grade it.

4. You need to provide either a “run” script or a Makefile so that the instructor

can run your code easily on comp232.com.

5. You need to run the test cases found in the INPUT directory for each task.

After you have run the test cases on your system, you need to upload your

test output files, which must end in .txt, into your LAB11/TASK# directories

so instructor can review your work for each task.

6. On at least a weekly basis, you should upload all your current work to

comp232.com in the event that the server is down on or before May 18th.

7. On or before December 12th, all work must be uploaded to comp232.com.

You will be given five (5) weeks to complete this assignment, but please manage

your time wisely.

Student needs to create a LAB11 directory and individual task directories on

comp232.com and upload all source code and sample test run outputs regardless if the

student has completed the task or not.

Instructor needs to see what tasks have been completed on-time or at least what

progress has been made.

Points can be deducted if student does not meet all task requirements by the above due

dates.

If student falls behind, instructor can request a one-on-one sessions to review and help

with student’s progress.

Test input files can be found in the /home/LAB11/INPUTS directory.

Sample test outputs from running your ciLisp program need to be found in your home

directory under ~/LAB11/TASK# directory with file names ending in .txt on

comp232.com.

3

For example, output from running the Task 1 task_1_all.cilisp test case using your cilisp

program need to be found in ~/LAB11/TASK1/task_1_all.txt file. Likewise, output

from running the Task 2 test case named task_2.cilisp using your cilisp program need to

be found in ~/LAB11/TASK2/task_2.txt.

Tasks must be completed in order. There is no extra credit for starting a new task if the

previous task isn’t completed first.

During finals week on December 7th, you need to have submitted all work before

11:59 PM. Late work will not be accepted as it’s finals week.

Downloading /home/LAB11 Files

Files for this project are found on comp232.com in the /home/LAB11 directory.

To download these files from comp232.com onto your system, run the following

commands:

john@oho:~$ pwd  Start in your home directory on your laptop.

/home/john

john@oho:~$ mkdir LAB11  Create LAB11 directory.

john@oho:~$ cd LAB11  cd to LAB11.

john@oho:~/LAB11$ ls  Directory is empty.

john@oho:~/LAB11$ sftp comp232.com  Run sftp comp232.com.

Connected to comp232.com.

sftp> cd /home/LAB11  cd to /home/LAB11

sftp> mget -r *  Run mget -r * DON’T FORGET THE -r

Fetching /home/LAB11/INPUTS/ to INPUTS

Retrieving /home/LAB11/INPUTS

Retrieving /home/LAB11/INPUTS/task_1

/home/LAB11/INPUTS/task_1/hypot.cilisp 100% 219 2.3KB/s 00:00

/home/LAB11/INPUTS/task_1/max.cilisp 100% 111 1.3KB/s 00:00

/home/LAB11/INPUTS/task_1/number.cilisp 100% 58 0.8KB/s 00:00

/home/LAB11/INPUTS/task_1/sqrt.cilisp 100% 126 0.8KB/s 00:00

/home/LAB11/INPUTS/task_1/neg.cilisp 100% 64 1.1KB/s 00:00

/home/LAB11/INPUTS/task_1/exp.cilisp 100% 64 1.2KB/s 00:00

/home/LAB11/INPUTS/task_1/sub.cilisp 100% 133 2.5KB/s 00:00

4

/home/LAB11/INPUTS/task_1/composition.cilisp 100% 420 7.0KB/s 00:00

/home/LAB11/INPUTS/task_1/exp2.cilisp 100% 104 2.0KB/s 00:00

/home/LAB11/INPUTS/task_1/mult.cilisp 100% 106 1.6KB/s 00:00

/home/LAB11/INPUTS/task_1/log.cilisp 100% 138 2.5KB/s 00:00

/home/LAB11/INPUTS/task_1/pow.cilisp 100% 194 3.2KB/s 00:00

/home/LAB11/INPUTS/task_1/cbrt.cilisp 100% 126 2.2KB/s 00:00

/home/LAB11/INPUTS/task_1/min.cilisp 100% 83 1.5KB/s 00:00

/home/LAB11/INPUTS/task_1/remainder.cilisp 100% 241 4.6KB/s 00:00

/home/LAB11/INPUTS/task_1/div.cilisp 100% 150 2.5KB/s 00:00

/home/LAB11/INPUTS/task_1/abs.cilisp 100% 85 1.6KB/s 00:00

/home/LAB11/INPUTS/task_1/add.cilisp 100% 110 2.0KB/s 00:00

/home/LAB11/INPUTS/task_5.cilisp 100% 540 9.3KB/s 00:00

/home/LAB11/INPUTS/task_4_read_target.txt 100% 39 0.7KB/s 00:00

/home/LAB11/INPUTS/task_3.cilisp 100% 112 1.8KB/s 00:00

/home/LAB11/INPUTS/task_4.cilisp 100% 569 10.7KB/s 00:00

/home/LAB11/INPUTS/task_2.cilisp 100% 705 13.0KB/s 00:00

Fetching /home/LAB11/bison_flex.log to bison_flex.log

Fetching /home/LAB11/cilisp.c to cilisp.c

/home/LAB11/cilisp.c 100% 5307 91.8KB/s 00:00

Fetching /home/LAB11/cilisp.h to cilisp.h

/home/LAB11/cilisp.h 100% 1605 28.6KB/s 00:00

Fetching /home/LAB11/cilisp.l to cilisp.l

/home/LAB11/cilisp.l 100% 1791 30.0KB/s 00:00

Fetching /home/LAB11/cilisp.y to cilisp.y

/home/LAB11/cilisp.y 100% 1140 21.7KB/s 00:00

Fetching /home/LAB11/yyreadprint.c to yyreadprint.c

/home/LAB11/yyreadprint.c 100% 1957 31.3KB/s 00:00

sftp> quit

john@oho:~/LAB11$ ls  INPUTS is a directory containing test files.

INPUTS bison_flex.log cilisp.c cilisp.h cilisp.l cilisp.y yyreadprint.c

john@oho:~/LAB11$ ls -lR  Run a recursive list.

.:

total 32

drwxr-xr-x 3 root root 4096 Apr 12 22:11 INPUTS

-rw-r--r-- 1 root root 5307 Apr 12 22:11 cilisp.c

-rw-r--r-- 1 root root 1584 Apr 12 22:11 cilisp.h

-rw-r--r-- 1 root root 1821 Apr 12 22:11 cilisp.l

-rw-r--r-- 1 root root 1140 Apr 12 22:11 cilisp.y

-rwxr-xr-x 1 root root 300 Apr 12 22:13 run

-rw-r--r-- 1 root root 1957 Apr 12 22:11 yyreadprint.c

5

./INPUTS:

total 24

drw-r--r-- 2 root root 4096 Apr 12 22:42 task_1

-rw-r--r-- 1 root root 705 Apr 12 22:42 task_2.cilisp

-rw-r--r-- 1 root root 112 Apr 12 22:42 task_3.cilisp

-rw-r--r-- 1 root root 569 Apr 12 22:42 task_4.cilisp

-rw-r--r-- 1 root root 39 Apr 12 22:42 task_4_read_target.txt

-rw-r--r-- 1 root root 540 Apr 12 22:42 task_5.cilisp

./INPUTS/task_1:

total 72

-rw-r--r-- 1 root root 85 Apr 12 22:42 abs.cilisp

-rw-r--r-- 1 root root 110 Apr 12 22:42 add.cilisp

-rw-r--r-- 1 root root 126 Apr 12 22:42 cbrt.cilisp

-rw-r--r-- 1 root root 420 Apr 12 22:42 composition.cilisp

-rw-r--r-- 1 root root 150 Apr 12 22:42 div.cilisp

-rw-r--r-- 1 root root 64 Apr 12 22:42 exp.cilisp

-rw-r--r-- 1 root root 104 Apr 12 22:42 exp2.cilisp

-rw-r--r-- 1 root root 219 Apr 12 22:42 hypot.cilisp

-rw-r--r-- 1 root root 138 Apr 12 22:42 log.cilisp

-rw-r--r-- 1 root root 111 Apr 12 22:42 max.cilisp

-rw-r--r-- 1 root root 83 Apr 12 22:42 min.cilisp

-rw-r--r-- 1 root root 106 Apr 12 22:42 mult.cilisp

-rw-r--r-- 1 root root 64 Apr 12 22:42 neg.cilisp

-rw-r--r-- 1 root root 58 Apr 12 22:42 number.cilisp

-rw-r--r-- 1 root root 194 Apr 12 22:42 pow.cilisp

-rw-r--r-- 1 root root 241 Apr 12 22:42 remainder.cilisp

-rw-r--r-- 1 root root 126 Apr 12 22:42 sqrt.cilisp

-rw-r--r-- 1 root root 133 Apr 12 22:42 sub.cilisp

TASK 1

Recall Cambridge Polish Notation (CPN) in which operators and their operands are enclosed in

parenthesis.

For example, (add 1 2) is the CPN equivalent of 1+2.

Expressions in CPN can be nested, so the following expression would be valid, and would result in 6.
(add 1 (add 2 3))

6

Your must create a functioning CPN calculator which works with the functions listed in

the FUNC_TYPE enum in the provided code through the MIN_FUNC function (all functions

appearing after MIN_FUNC in the enum will be implemented in later tasks.

This calculator will serve as the core functionality for CI-LISP.

You may want to check out the sample runs below better understand what will be implemented

before reading further.

The initial grammar is as follows:

program ::= s_expr EOL | s_expr EOFT | EOL | EOFT

s_expr ::= f_expr | number | QUIT

f_expr ::= (FUNC s_expr_section)

s_expr_section ::= s_expr_list | <empty>

s_expr_list ::= s_expr | s_expr s_expr_list

FUNC ::= neg | abs | add | sub |
 mult | div | remainder | exp |
 exp2 | pow | log | sqrt |
 cbrt | hypot | max | min

number ::= INT | DOUBLE

INT ::= optional +/-,
 then some digits

DOUBLE ::= optional +/-,
 then some digits,
 then a decimal point,
 then optionally some more digits

QUIT ::= quit

The non-terminals s_expr and f_expr are shorthand:

• s_expr means symbolic expression

• f_expr means function expression

DATA STRUCTURES

Next we'll discuss the structures provided in cilisp.h. For a more intuitive understanding of the

structures and their names defined here, note that AST is short for __A__bstract __S__yntax __T__ree.

As such, the structures discussed below are intended to house data in an abstract syntax tree.

https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_1.md#sample-runs
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.h

7

NUMBERS

The NUM_TYPE enum and AST_NUMBER struct define everything necessary to house both numeric

data types (integers and floating point values) in a single struct.

typedef enum num_type {
 INT_TYPE,
 DOUBLE_TYPE
} NUM_TYPE;

typedef struct {
 NUM_TYPE type;
 double value;
} AST_NUMBER;

typedef AST_NUMBER RET_VAL;

Note that even when an AST_NUMBER's type is INT_TYPE, we will be storing it's actual value as a

double under the hood. This is to make function evaluation a little less tedious; students wishing to

instead use this alternative AST_NUMBER are welcome to do so:

typedef struct {
 NUM_TYPE type;
 union {
 double floating_point;
 long integral;
 } value;
} AST_NUMBER;

Each AST_NUMBER will house a member of the NUM_TYPE enum (denoting the type of number

being stored) alongside a numeric value.

The last line, which gives the AST_NUMBER struct a second name (RET_VAL), exists exclusively for

readability; when we evaluate a part of our syntax tree, the result will always be a number. We will

use AST_NUMBERs to house numbers which are part of the syntax tree, and RET_VALs to house the

results of evaulation (__RET__urned __VAL__ues).

FUNCTIONS

The terms "operator" and "function" will be used interchangeably for our discussion here.

We'll start our discussion of functions with the enum and struct definitions in cilisp.h.

typedef enum func_type {
 NEG_FUNC,
 ABS_FUNC,
 ADD_FUNC,
 // TODO complete the enum
 CUSTOM_FUNC
} FUNC_TYPE;

https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.h

8

This enum will list all functions which will be implemented throughout the course of the project.

Clearly, it isn't yet complete, hence the TODO. You'll add more functions to it as you work through this

task, and through future tasks.

When function calls are parsed as f_exprs, the data for said calls will be stored in

an AST_FUNCTION:

typedef struct {
 FUNC_TYPE func;
 struct ast_node *opList;
} AST_FUNCTION;

This struct stores the operator used in the function call (a member of the FUNC_TYPE enum) and the

operands for the function (a linked list of struct ast_nodes, which we will discuss in the GENERIC

NODES section below).

Take note of the resolveFunc function cilisp.c. This function takes as input a function's name (in

string form), and outputs the corresponding FUNC_TYPE member. It will be used to assign value

to FUNC tokens while lexing.

resolveFunc works because the array of function names (funcNames, in cilisp.c) lists all functions in

the same order as the FUNC_TYPE enum. If either of these is edited, the other must also be edited to

match. If they are not kept in sync, resolveFunc will not work. CUSTOM_FUNC should be left as the

last element of resolveFunc for the same reason; user-defined functions will be implemented at the

end of the project, and we'll know a function is user-defined if we make it through the

whole funcNames array without finding the name of the function.

GENERIC NODES

We've already discussed two types of abstract syntax tree nodes for housing numbers and functions.

In order to make these types of nodes interchangeable, it is necessary to wrap them in a generic

abstract syntax tree node which can store either type of node.

As such, we have the AST_NODE type:

typedef enum {
 NUM_NODE_TYPE,
 FUNC_NODE_TYPE
} AST_NODE_TYPE;

typedef struct ast_node {
 AST_NODE_TYPE type;
 union {
 AST_NUMBER number;
 AST_FUNCTION function;
 } data;
 struct ast_node *next;
} AST_NODE;

An AST_NODE stores a member of the AST_NODE_TYPE enum in it's type field, so it can be

determined what type of node is housed in its data field (a union which can store either

a AST_NUMBER or a AST_FUNCTION). It also stores a pointer to another AST_NODE in

https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_1.md#generics
https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_1.md#generics
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.c
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.c

9

its next field, which allows AST_NODEs to be stored in a linked list style for use as operands (see

the opList field in AST_FUNCTION).

LEXING

First, it is necessary to define all tokens and all non-terminals within the grammar. tokens (and non-

terminals, called types by yacc), will be defined in cilisp.y in the definitions section. The provided

token and type definitions are:

%union {
 double dval;
 int ival;
 struct ast_node *astNode;
};

%token <ival> FUNC
%token <dval> INT
%token QUIT EOL EOFT

%type <astNode> s_expr

Clearly, this is incomplete; you should know from the previous labs how to complete this definitions

section, and we will not discuss it further here (but as always, questions are welcome).

The union contains all types that tokens and types will have. In this case, token and type values will

all be stored as double, int or ast_node *.

The tokens defined by the yacc file must be lexed. As we know, the lex file is used to configure a

lexer.

The provided cilisp.l is barely started. It has rules to tokenize and return some tokens, but not all of

them. You must complete it.

Pay attention to the llog calls made for debugging purposes each time a token is created. Just like in

the lab, these calls print to a log file src/bison-flex-outputs/flex_bison_log. Every rule

in cilisp.l should include an llog call.

PARSING

The goal of the parser is to construct an abstract syntax tree after tokenization. Most of the

productions in your grammar will have an equivalent production in cilisp.y, which is the configuration

file for the parser.

The first set of productions in cilisp.y are for parsing programs, which serve as an entry point. The

productions are provided, and should be changed cautiously if at all. Productions for s_expr ::=

error and s_expr ::= QUIT are also provided.
program:

https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.y
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.l
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.l
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.y
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.y

10

 s_expr EOL {
 ylog(program, s_expr EOL);
 if ($1) {
 printRetVal(eval($1));
 freeNode($1);
 }
 YYACCEPT;
 }
 | s_expr EOFT {
 ylog(program, s_expr EOFT);
 if ($1) {
 printRetVal(eval($1));
 freeNode($1);
 }
 exit(EXIT_SUCCESS);
 }
 | EOL {
 ylog(program, EOL);
 YYACCEPT; // paranoic; main skips blank lines
 }
 | EOFT {
 ylog(program, EOFT);
 exit(EXIT_SUCCESS);
 };

s_expr:
 QUIT {
 ylog(s_expr, QUIT);
 exit(EXIT_SUCCESS);
 }
 | error {
 ylog(s_expr, error);
 yyerror("unexpected token");
 $$ = NULL;
 };

Note that every production has a ylog call; this function, like llog, prints to the log file stating what

lexing and parsing steps are taken. Every production that you add should include a ylog file, as well,

as the log will be a crucial tool in debugging the lexer and parser.

The rest of the yacc file is up to you.

The figure below (which can be found here) may help you visualize what needs to be done. Note that

some reductions in the grammar are not illustrated in the figure.

https://github.com/dempseyucla/232_CILISP/blob/master/figures/task_1/task_1.png

11

You are strongly encouraged to illustrate productions like this as you go through the project, and to

occasionally draw out entire syntax trees for test inputs.

Many of these productions will need to call the functions declared at the bottom of cilisp.h:

AST_NODE *createNumberNode(double value, NUM_TYPE type);
AST_NODE *createFunctionNode(FUNC_TYPE func, AST_NODE *opList);
AST_NODE *addExpressionToList(AST_NODE *newExpr, AST_NODE *exprList);

These functions are defined in cilisp.c; some of their definitions are partially completed already.

https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.h
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.c

12

Whenever a function or value needs to be accessible by the lexer or parser, it must be declared

in cilisp.h.

For instance, in the number ::= INT production, you will likely want to assign $$ (the value of

the number) to the result of a call to createNumberNode, which should create

an AST_NODE housing an AST_NUMBER whose data is populated with that from the INT token (i.e.

its double value) and the type (INT_TYPE, from the NUMBER_TYPE enum).

Both createNumberNode and INT_TYPE are accessible to the parser because they are declared

in cilisp.h.

EVALUATION

GENERIC EVALUATION

Once parsing is complete (i.e. when a series of tokens is reduced to a sequence s_expr

EOL or s_expr EOFT, the contents of a single program) the eval function is called on the root s_expr.

You can see this call in the provided program ::= s_expr EOL production in cilisp.y. This function is

the entry point for a recursive system of functions whose purpose is to evaluate the syntax tree and

output the resulting RET_VAL.

While it is generally bad practice to pass structs by value, we will make an exception for

the RET_VAL struct, which is sufficiently small for the issue to be irrelevant. Of course, if you wish to

pass them around by reference instead, you're welcome to do so.

The eval function takes as input a generic AST_NODE *. Its job is to determine which type

of AST_NODE is referrenced and call the corresponding function to evaluate it. That is, eval must

determine if the referenced AST_NODE is of type NUM_NODE_TYPE or FUNC_NODE_TYPE and

call evalNumNode or evalFuncNode on it respectively.

This process is similar to the evaluation prodedure carried out in the parser lab; no individual

evaluation function should be too complex because of the recursive setup. For instance, when

evaluating a function, you must evaluate its operands, but you don't need to do this by hand

in evalFuncNode; you can instead simply call eval on each operand, and use the resulting RET_VALs

as operands for the function evaluation.

NUMBER EVALUATION

evalNumNode should be quick and easy; recall that a RET_VAL is really just an AST_NUMBER

under a different name.

FUNCTION EVALUATION

evalFuncNode should check which FUNC_TYPE the AST_FUNCTION contains, and call an

appropriate function to evaluate the result of running that operation with the input referenced linked

list of operands. For instance, if the function being evaluated has type NEG_TYPE, you might pass it

off to a function called evalNegFunction (which you'll need to add).

https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.h
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.h
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.y

13

That is, evalFuncNode should be a glorified switch or if/else cascade, which just calls the individual

function evaluation procedures. I strongly advise against doing said procedures inside

of evalFuncNode instead of making these helper functions; it's totally doable, but it's also more

tedious to read, debug, and expand.

Much of the work in function evaluation is catching and dealing with fringe cases. Often, you will

need to print warnings as described in the function desciptions and sample runs below. Use

the warning function, provided in cilisp.c for this purpose. It is essentically printf with a couple extra

features to keep the console output pretty and well-spaced. It also prepends "WARNING: " onto

whatever formatted string you pass it.

FUNCTION SPECIFICATIONS

Unary functions take 1 operand, binary take 2 operands, and n-ary take any number of operands.

Functions which are given too few operands should print warnings and return NAN_RET_VAL (defined

in cilisp.h) unless otherwise specified below. Functions which are given too many operands should

print warnings stating that the extra operands were ignored, and then only use the required number

of operands in calculation. If extra operands are provided, the leftmost operands should be used and

the extras on the right ignored.

Check out the math.h library (open the console and type man math to get its documentation) before

starting these implementations. Be careful: many of the math.h library functions don't behave as the

specifications below describe, despite similar nomenclature. For instance, math.h's remainder can

return a negative value, but the specifications for the remainder function below specify that the

result must be positive.

• neg

o unary

o returns the negation of the operand

o i.e. given x returns -x

• abs

o unary

o returns the absolute value of the operand

• add

o n-ary

o returns the sum of its operands

o return type depends on input types

o if given no inputs, prints warning and returns 0 as an integer

• sub

o binary

o returns result of subtracting second operand from first operand

o return type depends on operand types

• mult

o n-ary

https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.c
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.h

14

o returns the product of the operands

o return type depends on operand types

o if given no inputs, prints warning and returns 1 as an integer

• div

o binary

o returns the result of division of the first operand by second operand

o return type depends on operand types

o int division if done with 2 integers

• remainder

o binary (a and b input)

o returns an r such that:

▪ a = q * b + r

▪ q is an integer

▪ 0 <= r < | b |

• exp

o unary

o returns e raised to the specified power

o always returns a double

• exp2

o unary

o returns 2 raised to the specified power

o if operand is negative, return type is always double

o otherwise, return type depends on operand type

• pow

o binary

o returns first operand raised to power of second operand

o return type depends on operand types

• log

o unary

o returns natural log of operand

o always returns a double

• sqrt

o unary

o returns the square root of the operand

o always returns a double

• cbrt

o unary

o returns the cube root of the input

o always returns a double

• hypot

o n-ary

15

o returns the square root of the sum of squares of operands

o if given no inputs, prints a warning and returns 0

o always returns a double

o math.h's hypot only take 2 arguments; you'll need to build this by hand

• max

o n-ary

o returns maximum value among the operands

o return type is the type of the maximum operand

o if given no operands, prints a warning and returns nan

• min

o n-ary

o returns minimum value among the operands

o return type is the type of the minimum operand

o if given no operands, prints a warning and returns nan

SAMPLE RUNS

In the sample runs below, inputs are on the same line as the > , and the output is printed below

(along with any warnings). The inputs shown in these sample runs are all provided in

the inputs/task_1 directory. You can edit the run configurations to provide a path to an input file,

or run without any arguments and type inputs in by hand. The provided input files have quit so

sample runs match runs done by hand, but this is unnecessary with file inputs; the program will end

when an EOF is encounters as well.

You are encouraged to come up with a composite test input of your own, to test all of task 1, once

your implementation matches the sample runs for all provided inputs.

When you're done implementing your lexing, parsing and evaluation procedures to match the

sample runs below, don't forget to read the CLEANING UP section below.

number

> 0
Integer : 0

> 0.
Double : 0.000000

> 1
Integer : 1

> 1.
Double : 1.000000

> 0.0
Double : 0.000000

> 0.5

https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_1.md#cleaning_up

16

Double : 0.500000

> +0
Integer : 0

> +10.55
Double : 10.550000

> -12.87
Double : -12.870000

> -12.
Double : -12.000000

> -12
Integer : -12

> .34
WARNING: Invalid character >>.<<
Integer : 34

Process finished with exit code 0

neg

> (neg 5)
Integer : -5

> (neg 5.5)
Double : -5.500000

> (neg -5.0)
Double : 5.000000

> (neg -5)
Integer : 5

> (neg)
WARNING: neg called with no operands! nan returned!
Double : nan

> (neg 1 2)
WARNING: neg called with extra (ignored) operands!
Integer : -1

> quit

Process finished with exit code 0

abs

> (abs 1)
Integer : 1

> (abs 1.2)

17

Double : 1.200000

> (abs -3)
Integer : 3

> (abs 0)
Integer : 0

> (abs 0.0)
Double : 0.000000

> (abs -1.4)
Double : 1.400000

> (abs)
WARNING: abs called with no operands! nan returned!
Double : nan

> (abs -1 2)
WARNING: abs call with extra (ignored) operands!
Integer : 1

> quit

Process finished with exit code 0

add

> (add)
WARNING: add call with no operands, 0 returned!
Integer : 0

> (add 1)
Integer : 1

> (add 1.0)
Double : 1.000000

> (add 1 2 3 4 5)
Integer : 15

> (add 1 -2 3 -4 5 -6)
Integer : -3

> (add 0.0 1 -2 3 -4 5 -6)
Double : -3.000000

> (add 1 -1.0)
Double : 0.000000

> quit

Process finished with exit code 0

18

sub

> (sub)
WARNING: sub called with no operands!
Double : nan

> (sub 1)
WARNING: sub called with only one arg!
Double : nan

> (sub 1.0)
WARNING: sub called with only one arg!
Double : nan

> (sub 1 2)
Integer : -1

> (sub 2 1)
Integer : 1

> (sub 2 -1)
Integer : 3

> (sub 2.0 1)
Double : 1.000000

> (sub 2.0 -1)
Double : 3.000000

> (sub 1 1.0)
Double : 0.000000

> (sub 2.0 1.0)
Double : 1.000000

> (sub 1 2 3)
WARNING: sub called with extra (ignored) operands!
Integer : -1

> quit

Process finished with exit code 0

mult

> (mult)
WARNING: mult called with no operands! 1 returned!
Integer : 1

> (mult 1)
Integer : 1

> (mult 1.0)
Double : 1.000000

19

> (mult -1)
Integer : -1

> (mult -1 -1.0)
Double : 1.000000

> (mult 1 -2 3 -4 5)
Integer : 120

> (mult -1.0 2 -3.0 4 -5)
Double : -120.000000

> quit

Process finished with exit code 0

div

> (div)
WARNING: div called with no operands! nan returned!
Double : nan

> (div 1)
WARNING: div called with only one arg! nan returned!
Double : nan

> (div 1.0)
WARNING: div called with only one arg! nan returned!
Double : nan

> (div 1 2)
Integer : 0

> (div 1.0 2)
Double : 0.500000

> (div 2 1)
Integer : 2

> (div 2.0 1)
Double : 2.000000

> (div 5 2.0)
Double : 2.500000

> (div -20.0 4)
Double : -5.000000

> (div 1 2 3 4)
WARNING: div called with extra (ignored) operands!
Integer : 0

> (div 1 2 3)
WARNING: div called with extra (ignored) operands!
Integer : 0

20

> (div 5.0 2 3)
WARNING: div called with extra (ignored) operands!
Double : 2.500000

> quit

Process finished with exit code 0

remainder

> (remainder)
WARNING: remainder called with no operands! nan returned!
Double : nan

> (remainder 1)
WARNING: remainder called with one arg! nan returned!
Double : nan

> (remainder 0)
WARNING: remainder called with one arg! nan returned!
Double : nan

> (remainder -1.0)
WARNING: remainder called with one arg! nan returned!
Double : nan

> (remainder 1 2)
Integer : 1

> (remainder 2 1)
Integer : 0

> (remainder 2.5 1)
Double : 0.500000

> (remainder 2 3)
Integer : 2

> (remainder -6 10)
Integer : 4

> (remainder -6.0 10.0)
Double : 4.000000

> (remainder -6.0 -10.0)
Double : 4.000000

> (remainder 1 2 3)
WARNING: remainder called with extra (ignored) operands!
Integer : 1

> (remainder 23 7 10)
WARNING: remainder called with extra (ignored) operands!
Integer : 2

> quit

21

Process finished with exit code 0

exp

> (exp)
WARNING: exp called with no operands! nan returned!
Double : nan

> (exp 1)
Double : 2.718282

> (exp -1)
Double : 0.367879

> (exp 5.0)
Double : 148.413159

> (exp -2.0)
Double : 0.135335

> (exp 1 2)
WARNING: exp called with extra (ignored) operands!
Double : 2.718282

> quit

Process finished with exit code 0

exp2

> (exp2)
WARNING: exp2 called with no operands! nan returned!
Double : nan

> (exp2 1)
Integer : 2

> (exp2 1.0)
Double : 2.000000

> (exp2 0)
Integer : 1

> (exp2 0.0)
Double : 1.000000

> (exp2 0.5)
Double : 1.414214

> (exp2 -2)
Double : 0.250000

> (exp2 20.0)
Double : 1048576.000000

22

> (exp2 1 2)
WARNING: exp2 called with extra (ignored) operands!
Integer : 2

> quit

Process finished with exit code 0

pow

> (pow)
WARNING: pow called with no operands! nan returned!
Double : nan

> (pow 1)
WARNING: pow called with only one operand! nan returned!
Double : nan

> (pow 1.0)
WARNING: pow called with only one operand! nan returned!
Double : nan

> (pow 1 1)
Integer : 1

> (pow 1 1.0)
Double : 1.000000

> (pow 2 1)
Integer : 2

> (pow 2.1 1)
Double : 2.100000

> (pow -2 0.5)
Double : nan

> (pow -2 0)
Integer : 1

> (pow -2.0 0.0)
Double : 1.000000

> (pow -2.0 0)
Double : 1.000000

> (pow 3 3)
Integer : 27

> (pow 3.0 3)
Double : 27.000000

> (pow 27 (div 1 3.0))
Double : 3.000000

23

> (pow 1 2 3)
WARNING: pow called with extra (ignored) operands!
Integer : 1

> quit

Process finished with exit code 0

log

> (log)
WARNING: log called with no operands! nan returned!
Double : nan

> (log 1)
Double : 0.000000

> (log 0)
Double : -inf

> (log -1)
Double : nan

> (log 0.0)
Double : -inf

> (log -1.0)
Double : nan

> (log (exp 1))
Double : 1.000000

> (div (log 27) (log 3))
Double : 3.000000

> (div (log 27.0) (log 3))
Double : 3.000000

> (log 1 2)
WARNING: log called with extra (ignored) operands!
Double : 0.000000

> quit

Process finished with exit code 0

sqrt

> (sqrt)
WARNING: sqrt called with no operands! nan returned!
Double : nan

> (sqrt 1)
Double : 1.000000

24

> (sqrt 1.0)
Double : 1.000000

> (sqrt 0)
Double : 0.000000

> (sqrt 0.0)
Double : 0.000000

> (sqrt -1)
Double : nan

> (sqrt -1.0)
Double : nan

> (sqrt 4)
Double : 2.000000

> (sqrt 170.0)
Double : 13.038405

> (sqrt 2)
Double : 1.414214

> (sqrt 1 2)
WARNING: sqrt called with extra (ignored) operands!
Double : 1.000000

> quit

Process finished with exit code 0

cbrt

> (cbrt)
WARNING: cbrt called with no operands! nan returned!
Double : nan

> (cbrt 0)
Double : 0.000000

> (cbrt 0.0)
Double : 0.000000

> (cbrt -1)
Double : -1.000000

> (cbrt -1.0)
Double : -1.000000

> (cbrt 1)
Double : 1.000000

> (cbrt 1.0)
Double : 1.000000

25

> (cbrt 27)
Double : 3.000000

> (cbrt 27.0)
Double : 3.000000

> (cbrt 4)
Double : 1.587401

> (cbrt 1 2)
WARNING: cbrt called with extra (ignored) operands!
Double : 1.000000

> quit

Process finished with exit code 0

hypot

> (hypot)
WARNING: hypot called with no operands! 0 returned!
Double : 0.000000

> (hypot 1)
Double : 1.000000

> (hypot 1.0)
Double : 1.000000

> (hypot 3 4)
Double : 5.000000

> (hypot -3 4)
Double : 5.000000

> (hypot -30 -40.0)
Double : 50.000000

> (hypot 4 4 7)
Double : 9.000000

> (hypot 7.0 4 4.0)
Double : 9.000000

> (hypot 12 13 14)
Double : 22.561028

> (hypot 5 5 5)
Double : 8.660254

> (hypot -5 -5.0 (sqrt 25))
Double : 8.660254

> (hypot 0 0 0.0 -3 0 0 0 0 4 0.0 -0.0 12)
Double : 13.000000

26

> quit

Process finished with exit code 0

max

> (max)
WARNING: max called with no operands! nan returned!
Double : nan

> (max 1)
Integer : 1

> (max -1)
Integer : -1

> (max 1.0)
Double : 1.000000

> (max 232311.121)
Double : 232311.121000

> (max 1 2 3 4 5 6 7 8.0 9)
Integer : 9

> (max 1 2 25.0 -26.0 12)
Double : 25.000000

> quit

Process finished with exit code 0

min

> (min)
WARNING: min called with no operands! nan returned!
Double : nan

> (min 1)
Integer : 1

> (min 0.0)
Double : 0.000000

> (min 0)
Integer : 0

> (min -1 2 -3 4 -5 6)
Integer : -5

> (min -1.0 -12.0 12)
Double : -12.000000

> quit

27

Process finished with exit code 0

composition tests

> (exp (log 1))
Double : 1.000000

> (exp2 (div 1 2.0))
Double : 1.414214

> (cbrt (pow 3 3))
Double : 3.000000

> (cbrt (pow 3 6))
Double : 9.000000

> (log (exp (log (exp 1))))
Double : 1.000000

> (sub (mult 1 2 3 4) (add 1 2 3 4))
Integer : 14

> (sub (mult 1 2 3 -4.0) (add -1 -2 -3 -4))
Double : -14.000000

> (hypot (sqrt (div 100 7.0)) (mult 6 (sqrt (div 100.0 7))))
Double : 22.990681

> (hypot (sqrt (div 100 7.0)) (sqrt (mult 6 (div 100.0 7))))
Double : 10.000000

> (add 1 (add 2 (add 3 (add 4 (add 5 (add 6 (add 7)))))))
Integer : 28

> (add 1 (add 2 (add 3 (add 4 (add 5 (add 6 (sub 0 -7.0)))))))
Double : 28.000000

> quit

Process finished with exit code 0

CLEANING UP

The final task is cleaning up the syntax tree when we're done with it. Like evaluation, this should be

done recursively.

The freeNode function is declared in cilisp.h, defined (incompletely) in cilisp.c, and called

in cilisp.y after evaluation of an input is complete. freeNode will need to be completed for this task

(though it should be relatively small). As you progress through the project, it will grow into a

recursive system of functions to free the whole abstract syntax tree.

https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.h
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.c
https://github.com/dempseyucla/232_CILISP/blob/master/src/cilisp.y

28

TASK 2

SUMMARY

Here you will add support for definition and evaluation of variables (called symbols in

Lisp jargon). We'll add the following productions to the grammar:

s_expr ::= SYMBOL | (let_section s_expr)

let_section ::= (let let_list)

let_list ::= let_elem | let_elem let_list

let_elem ::= (SYMBOL s_expr)

SYMBOL ::= at least 1 letter,
 followed by 0 or more letters and digits

letter ::= lowercase english alphabet letter
 | uppercase english alphabet letter
 | $ | _

You will need to update your project to support these additions.

While implementing the new productions above in your yacc file, be careful not to:

• allow let_sections to be empty (this in turn allows for redundant parenthesis,

which will create parser conflicts when we implement 0-argument functions later

on in the project).

• do left-recursion when making let_lists; this will create shift-reduce conflicts. In

this case yacc can handle them, but still, never do left-recursion. In fact, you

might want to go back and check your task 1 implementation to ensure that you

didn't do left-recursion for s_expr_listss.

LEXING

Symbol tokenization should be a walk in the park; just make sure it comes after the

function and keyword tokenizations in the lex file so that functions and keywords aren't

tokenized as symbols!

In addition to symbol tokens, there is also a new keyword to add to your lexer.

29

DATA STRUCTURES

NEW NODE TYPES

First, you'll need a way to store symbols in AST_NODEs, just like you have already

stored numbers and functions. You'll want to add two new elements to

the AST_NODE_TYPE enum and create corresponding structs to store symbol data and

the scope data in the syntax tree.

typedef enum {
 NUM_NODE_TYPE,
 FUNC_NODE_TYPE,
 SYM_NODE_TYPE,
 SCOPE_NODE_TYPE
} AST_NODE_TYPE;

typedef struct {
 char* id;
} AST_SYMBOL;

typedef struct {
 struct ast_node *child;
} AST_SCOPE;

SYMBOL DEFINITIONS

A let_elem defines a symbol. Its children are a SYMBOL token and an s_expr. The idea is to

assign value to a variable using the identifier stored in the SYMBOL token and value of

the AST_NODE corresponding to the s_expr.

You should use a linked list of symbols in each scope to keep track of the symbol names

alongside their values. You may want to use this struct (or something similar) for this

linked list:

typedef struct symbol_table_node {
 char *id;
 AST_NODE *value;
 struct symbol_table_node *next;
} SYMBOL_TABLE_NODE;

LINKING DEFINITIONS TO EXPRESSIONS

Finally, to link each scope to its contained symbol table and to parent scopes, and to

allow AST_SYMBOLs to be stored in generic AST_NODEs you'll want to modify

the AST_NODE struct:

typedef struct ast_node {
 AST_NODE_TYPE type;

30

 struct ast_node *parent;
 struct symbol_table_node *symbolTable;
 union {
 AST_NUMBER number;
 AST_FUNCTION function;
 AST_SYMBOL symbol;
 AST_SCOPE scope;
 } data;
 struct ast_node *next;
} AST_NODE;

SCOPING

Scope nodes will be the result of the s_expr ::= (let_section s_expr) production; they

should be minimal nodes, which store a reference to the child s_expr (the one to the

right of the let_section) from the parent node (the one to the left).

Before we continue this discussion of scoping, it is important to clarify that

every AST_NODE defines / contains a scope. AST_SCOPE nodes aren't special in this

regard; to the contrary, they're special because they're only a scope.

Looking at the s_expr ::= (let_section s_expr) production, it may not be readily

apparent why scope nodes are necessary; why not just let the the s_expr on the left

literally BE the s_expr on the right once the let_section has been referenced to store

variable definitions. In other words, why not let this scope "collapse" into the

child s_expr once it has been used to assign the let_section to that s_expr? To see why,

consider an input in the form (let_section (let_section s_expr)); without the use

of a scope node, these two let_sections would have to be combined into a

single let_section (i.e. into a single scope). But there are two scopes here! Symbols

defined in the inner let_section should not be accessible in the outer let_section. For a

more tangible example, check this input and explanation below.

SUBROUTINES

You will need to add methods for AST_NODE creation for both new types

(SCOPE_NODE_TYPE and SYMBOL_NODE_TYPE), for linking symbol table nodes

together into linked lists, for linking said linked lists of symbol table nodes up to

the AST_NODEs whose scope they are in, and for looking through these symbol tables

to find symbol definitions in order to evaluate them.

When evaluating symbols, you need to look not only through the local symbol table but

also through the symbol tables in parent scopes; this is the purpose of

the parent pointer added to AST_NODEs.

https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_2.md#scope_example

31

If an undefined variable is evaluated, a warning should be printed

the NAN_RET_VAL should be returned. Symbol evaluation should look something like

this:

current scope <- the ast_node being evaluated (a symbol node storing an identifier)

while the current scope is not null
{
 Go through the symbol table associated with the current scope.
 Check each symbol to see if it has the identifier you're looking for.
 eval and return if found.

 Set the current scope to its parent scope.
}

The variable was undefined, print a warning and return NAN.

You will need to assign these parent scopes in several of places:

• When the s_expr ::= (let_section s_expr) production is performed:

o The child scope (the s_expr on the right) must have its parent set to the

parent scope (the s_expr on the left).

o The child scope must have its symbol table assigned to the let_section.

o The s_exprs stored in the let_section (i.e. the values of its defined symbols)

must have their parent set to the child scope.

• When the f_expr ::= (FUNC s_expr_section) production is performed,

the s_exprs in the let_section should have their parent set to the f_expr (i.e. the

parent of an operand is the function call containing it).

Whenever a symbol is evaluated, its value in the symbol table will be stored as

an AST_NODE. That AST_NODE should be evaluated (whatever type it is). Then, if

the AST_NODE is not a number node, it should be replaced with a number node storing

the value which resulted from evaluating the original AST_NODE. This means that if a

variable is accessed twice, the value found on the first evaluation will be used on the

second evaluation; work will not be repeated and the value won't change if other

variables change. Don't forget to call freeNode on the AST_NODE being replaced!

There are some specifications to be made with respect to how symbols and scoping

should behave, and we will make them through examples discussed below. All of these

inputs are in the task 2 test input, and included in the sample run (in order, for the most

part, but with some others between them).

((let (x 1) (x 2)) x)

Here the symbol x is defined twice in the same scope. The second definition should be

discarded, (and a warning should be printed stating as much) and the output of the

access to x should be 1.

https://github.com/dempseyucla/232_CILISP/blob/master/instructions/task_2.md#sample_run

32

((let (x 1)) ((let (x 2)) x))

x is defined in two different (nested) scopes, and then accessed in the inner scope. The

resulting value should be 2, from evaluating the more local definition.
((let (x 1)) ((let (y 2)) (add x y)))

x and y are defined in different (nested) scopes. They should both be accessible where

the addition call is made, becase it is in both scopes, and the result should be 3.
((let (a ((let (b 2)) (add b 3)))) a)

a's let element contains a nested definition of b, and accesses it. a is given then

value 5 (the result of adding 3 to b). There are no issues here; no variables are accessed

outside of the scope in which they are defined.
((let (a ((let (b 2)) (add b 3)))) (add a b))

b is defined within the let element defining a. b is accessed, but outside of this let

element (i.e. outside of the scope in which it is defined). b is undefined where it is

accessed. A warning should be printed (undefined variable) and the attempted access

to b should result in a NAN_RET_VAL.
((let (a 1) (b a)) ((let (a 2)) b))

In the input above, a is defined to be 1, and in the same scope b is defined to be a; in the

scope in which b is accessed, a has been redefined to 2.

Evaluating b requires first finding b's definition (in the let_section on the left) and then

evaluating the s_expr assigned to b (in this case, the symbol a). While the assignment

of a to 2 is accessible to b, it is not accessible to the let_elem defining b, which is in an

outer scope. The outer definition for a, however, is accessible to b's let_elem; b should

be 1.

For the same reason, the input below should result in an undefined symbol warning and

a NAN_RET_VAL output. The undefined symbol is the a within b's let element.
((let (b a)) ((let (a 2)) b))

SAMPLE RUN

Below is a sample run with the provided task 2 test input. These test cases should be

used for initial debugging; the test inputs which will be used when grading will be

qualitatively similar in their required functionality, but will be larger, more complex,

deeper (in terms of parse tree depth, or depth of nested scopes if you prefer), and more

varied in terms of the numeric inputs, functions, and identifiers used. The identifiers

below are particularly bad for testing the symbol definition in the grammar; be sure to

test with identifiers including digits, underscores, and dollar signs! In other words, these

test the basic functionality for this task, but do little in terms of stress-testing or

checking integration with task 1.

TLDR: Once your implementation matches this sample run for the provided task 2

inputs, you should create better test cases to more fully test the entire project so far.

33

> x
WARNING: Undefined Symbol "x" evaluated! NAN returned!
Double : nan

> ((let (x 1)) x)
Integer : 1

> ((let (x 1) (x 2)) x)
WARNING: Duplicate assignment to symbol "x" detected in the same scope!
Only the first assignment is kept!
Integer : 1

> ((let (x 1)) ((let (x 2)) x))
Integer : 2

> ((let (x 1)) ((let (y 2)) (add x y)))
Integer : 3

> ((let (a ((let (b 2)) (add b 3)))) a)
Integer : 5

> ((let (a ((let (b 2)) (add b 3)))) (add a b))
WARNING: Undefined Symbol "b" evaluated! NAN returned!
Double : nan

> ((let (a 1) (b a)) ((let (a 2)) b))
Integer : 1

> ((let (b a)) ((let (a 2)) b))
WARNING: Undefined Symbol "a" evaluated! NAN returned!
Double : nan

> ((let (a 1) (b a)) ((let (c ((let (a 2)) a))) b))
Integer : 1

> ((let (y 1) (x y)) ((let (y 2) (c x)) x))
Integer : 1

> (add ((let (abc 1)) (sub 3 abc)) 4)
Integer : 6

> (mult ((let (a 1) (b 2)) (add a b)) (sqrt 2))
Double : 4.242641

> (add ((let (a ((let (b 2)) (mult b (sqrt 10))))) (div a 2)) ((let (c 5)) (sqrt c)))
Double : 5.398346

> ((let (first (sub 5 1)) (second 2)) (add (pow 2 first) (sqrt second)))
Double : 17.414214

> ((let (abc 1)) (sub ((let (abc 2) (de 3)) (add abc de)) abc))
Integer : 4

> quit
Process finished with exit code 0

34

TASK 3

In this task, you will add typecasting functionality to the let_elem, allowing symbols to

have a specified type.

The new additions to the grammar are:

let_elem ::= (TYPE SYMBOL s_expr)

TYPE ::= "int" | "double"

You'll need to expand the SYMBOL_TABLE_NODE to include a type field (storing

a NUM_TYPE). You should also expand the NUM_TYPE enum to include

a NO_TYPE element, for when SYMBOL_TABLE_NODEs are created without type-

casting. Numbers with NO_TYPE should never exist; NO_TYPE is solely a placeholder to

say "this variable will take whatever type it was assigned, without casting it", i.e. the

variable will be duck-typed.

When evaluating symbols, you'll need to take their type into consideration;

the AST_NUMBER (which should be stored in the SYMBOL_TABLE_NODE's referenced

value AST_NODE after evaluation) should be stored with typecasting applied. If this

causes a loss of precision (i.e. if a double is cast as an integer) then a warning should be

printed stating that this is the case.

This task should be quick; if you find you need to make more than a few simple changes,

you're likely overthinking it!

The sample run below coincides with the provided task 3 test input. This only tests the

basic new functionality, and does not ensure that it is well integrated with the old

functionality. You should create more complex test cases, testing the entire project so

far.

> ((let (int a 1.25))(add a 1))
WARNING: Precision loss on int cast from 1.25 to 1.
Integer : 2

> ((let (double a 5))(add a 25))
Double : 30.000000

> ((let (double $_1 (add 1 2))) (mult $_1 3))
Double : 9.000000

> quit

Process finished with exit code 0

35

TASK 4

SUMMARY

In this task, you will:

• Implement the rand, read, equal, less, greater and print functions.

• Implement conditionals (CI Lisp's equivalent of the ternary operator)

FUNCTION SPECIFICATIONS

The functions will will work as follows:

• rand

o no arguments

o generates and returns random double from 0 to 1

o You may use C's rand function (which has "limited randomness", i.e. if left unseeded

it will output the same sequence of values on every run), but you must normalize the

answer to be between 0 and 1 exactly.

o man rand to learn more

o If you use the rand function without seeding, and you normalize properly, then your

sample run's rand outputs will match those below.

• read

o No arguments.

o Prints read :: to the stdout, and gets the user's response from the read_target file.

o The read_target is already set up for you; it is declared in the header file and

initialized in the main.

▪ If you enter a second argument in the run configurations, it will be used as a

file path to open the read_target.

▪ If no second argument is provided, the read_target will be the console, so

these inputs will be typed by hand (as was done in the sample runs).

o If the user's response is an integer or double literal, as defined by CI Lisp's

grammar, read returns the corresponding duck-typed number.

o If the user's response is not a valid CILisp number literal, read should print a warning

and return NAN_RET_VAL.

• equal, less, greater

o Binary.

o Return an integer with value 1 if the condition holds (i.e. if the first argument is equal

to, less than, greater than the second respectively). returns an int with

value 0 otherwise.

o 1 is "true" and 0 is "false".

36

o equal should ignore type, and should only check if the two numbers' stored values

are exactly equal; no error threshold for floating point rounding errors should be

used.

• print

o Unary.

o Evaluates its operand.

o Prints the result of evaluation with printRetVal, and then returns it.

o This should be very simple, as printRetVal is already implemented.

CONDITIONAL SPECIFICATIONS

The conditional operator will require adding the following to the grammar:

s_expr ::= (COND s_expr s_expr s_expr)

COND ::= "cond"

You'll also need to add several more functions to the FUNC tokenization definition,

the FUNC_TYPE enum and funcNames array.

Conditionals can be implemented via adding a new AST_NODE_TYPE member and corresponding

struct, and integrating this new type into the AST_NODE. Do not implmenet conditionals by adding

a new function instead; syntax errors should be thrown if a conditional doesn't have exactly

3 s_exprs.

If the first of the three s_expr (the condition) is nonzero (i.e. "true") when evaluated, then the

conditional returns the value of the second s_expr. Otherwise, the condition is zero (i.e. "false") so

the third s_expr's value is returned.

If A, B and C are expressions, then CI Lisp's (cond A B C) is the equivalent of A ? B : C in C (the

ternary operator).

SAMPLE RUN

The inputs for the sample run are provided in the task 4 sample input. It demonstrates the new

functionality in very simple inputs, and tests some of the old functionality. As always, you should

construct better test inputs to ensure that the new functionality is fully integrated with the old. A file

is also provided for read inputs which matches those in this run; running with this file as

the read_target will lead to the same outputs (but it won't be quite as pretty).

Make sure you understand why each value is printed in the sample run. Note that the result of the

full program evaluation is always printed, so the last printed value following each input is not from a

call to the print function, but from the printRetVal calls in the .y file, in the program productions.

The last two inputs (not including the quit) in the sample run provide an opportunity to test

specifications from task 2 which are often overlooked:

37

• In the second to last input, if x's value changes between first two prints, then variable

evaluation is not being done as specified. The value stored in the symbol table should be

replaced with an AST_NODE of type NUMBER_NODE_TYPE housing an AST_NUMBER the

first time x is evaluated, so the second evaluation of x should not run the rand function

again. The third printed value below is, of course, the result of the entire expression, which

is (add x x).

• Similarly, in the last input, while x and y are both accessed twice, there is only a

single read call for each one; if x's definition is left as a function node containing a read call

after the first evaluation, then read will be incorrectly called a second time for x, but if x's

definition is replaced with a numerical value the first time it is accessed, then the second

access simply gets this numerical value. The same applies to y. As such, the last input should

do two reads (one for x and one for y), not four reads.

> (print)
WARNING: print called with no operands!
Double : nan

> (print 1)
Integer : 1
Integer : 1

> (print 1 2)
WARNING: print called with extra (ignored) operands!
Integer : 1
Integer : 1

> (add 1 (print 2))
Integer : 2
Integer : 3

> (rand)
Double : 0.000008

> (rand)
Double : 0.131538

> (rand)
Double : 0.755605

> (rand)
Double : 0.458650

> (rand)
Double : 0.532767

> (rand)
Double : 0.218959

> (rand)
Double : 0.047045

> (rand)
Double : 0.678865

38

> (rand)
Double : 0.679296

> (rand)
Double : 0.934693

> (read)
read :: 1
Integer : 1

> (read)
read :: asdf
WARNING: Invalid read entry! NAN returned!
Double : nan

> (read)
read :: .5
WARNING: Invalid read entry! NAN returned!
Double : nan

> (read)
read :: -5.5
Double : -5.500000

> (add (read) (read))
read :: 10
read :: -10
Integer : 0

> (equal 0 0)
Integer : 1

> (equal 0 0.0)
Integer : 1

> (equal 0 0.0001)
Integer : 0

> (less 0 0)
Integer : 0

> (less -1 0)
Integer : 1

> (less 0 -0.00001)
Integer : 0

> (greater 0 1)
Integer : 0

> (greater 1 0)
Integer : 1

> (greater 0 0.0)
Integer : 0

39

> ((let (x 0) (y 1)) (less x y))
Integer : 1

> (cond 0 5 6)
Integer : 6

> (cond 1 5 6)
Integer : 5

> (cond (less 0 1) 5 6)
Integer : 5

> (cond (less 1 0) 5 6)
Integer : 6

> ((let (x (read)) (y (read))) (add (print x) (print x) (print y) (print y)))
read :: -17.2
Double : -17.200000
Double : -17.200000
read :: +127
Integer : 127
Integer : 127
Double : 219.600000

> ((let (x (rand))) (add (print x) (print x)))
Double : 0.383502
Double : 0.383502
Double : 0.767004

> quit

Process finished with exit code 0

40

TASK 5

SUMMARY, LEXING AND PARSING

Your last task is to add support for user-defined functions via lambda expressions. These

functions will work with composition with each other and with built-in functions. They

will also work with recursion.

The final additions to the grammar will be:

f_expr ::= (SYMBOL s_expr_section)

arg_list ::= SYMBOL | SYMBOL arg_list | <empty>

let_elem ::= (SYMBOL LAMBDA (arg_list) s_expr)
 | (TYPE SYMBOL LAMBDA (arg_list) s_expr)

LAMBDA ::= "lambda"

An example let_elem defining a function could be:

(int integerAdd lambda (x y) (add x y))

The function defined above is called integerAdd. It takes 2 arguments, specified in

its arg_list, called x and y. It returns the result of addition of x and y, but cast to an

integer.

DATA STRUCTURES

Custom functions will need identifiers; you'll need to add identifier storage to

the AST_FUNCTION struct for this purpose.

Function definitions will be stored in a symbol table. You may decide whether to store

them in the same symbol table as variables or a separate table just for function

definitions; I personally chose to do the prior.

In either case, you will need to expand the SYMBOL_TABLE_NODE to specify which type of

symbol is being stored. Prior to this task, there was only one symbol type; we called it

"symbol", but from here on out we'll refere to it as "variable". There are now two

additional symbol types: lambda and argument. All three types of symbols will need to

be treated differently.

It is strongly recommended that arguments are placed in their own symbol table for the

following reasons:

41

• They should be checked last when looking up symbols, so local variables can be

made to "reassign" arguments within a custom function's body.

• Values will need to be added to and removed from arguments in order; this is

easier if you don't have to go through a list containing variable and function

definitions to find the argument entries.

In order for custom functions to work recursively, you will need to implement a stack on

which the argument values will be stored (arguments will not use the value field in the

symbol table). The final data structures are below:

typedef enum {
 VAR_TYPE,
 LAMBDA_TYPE,
 ARG_TYPE
} SYMBOL_TYPE;

typedef struct symbol_table_node {
 char *id;
 AST_NODE *value;
 SYMBOL_TYPE symbolType;
 NUM_TYPE numType;
 struct stack_node *stack;
 struct symbol_table_node *next;
} SYMBOL_TABLE_NODE;

typedef struct stack_node {
 RET_VAL value;
 struct stack_node *next;
} STACK_NODE;

CUSTOM FUNCTION EVALUATION

Evaluating a custom function should be done as follows:

1. Evaluate all arguments. (You can temporarily stick their stack nodes together in a

linked-list fashion).

2. Put all argument values on the stacks of their respective ARG_TYPE definitions in

the the custom function's argument table.

3. Evaluate the custom function definition, using the values on the tops of the

stacks when arguments are accessed. Store the result.

4. Pop the argument values off of the tops of their stacks.

5. Return the result.

Straying from the sequence of instructions above may result in functions which work on

their own, but do not work recursively and/or with composition.

42

Note that a custom function and a variable may be defined in the same scope with the

same identifier, because the parenthesis in f_expr syntax will make it clear which is being

used. This means that when you are looking up a symbol for evaluation, you must

ensure that the definition has not only the right identifier, but also the right symbol

type; when looking up a function symbol, the defining symbol table node's type should

be LAMBDA_TYPE, but when looking up a variable symbol the definition can come

from either a VAR_TYPE or an ARG_TYPE.

Be sure to not replace custom function definitions with numeric values, as was done

with variable evaluation.

Sample Run

The inputs for sample run below are provided in the task 5 sample input. As always, you

should generated more complete composite tests. Depending on what markdown

editor you're using, you'll likely need to scroll right to see the end of the last input (or

just open the sample input file).

> ((let (int integerAdd lambda (x y) (add x y))) (integerAdd 1.495 1.495))
WARNING: Precision loss on int cast from 2.99 to 2.
Integer : 2

> ((let (x 1.495) (int x lambda (a b) (add a b))) (x x x))
WARNING: Precision loss on int cast from 2.99 to 2.
Integer : 2

> ((let (double myFunc lambda (x y) (mult (add x 5) (sub y 2)))) (sub (myFunc 3 5)
2))
Double : 22.000000

> ((let (f lambda (x y) (add x y))) (f (sub 5 2) (mult 2 3)))
Integer : 9

> ((let (int a 1) (f lambda (x y) (add x y))) (f 2 (f a 3)))
Integer : 6

> ((let (x lambda () (rand))) (add (print (x)) (print (x))))
Double : 0.000008
Double : 0.131538
Double : 0.131546

> ((let (double gcd lambda (x y) (cond (greater y x) (gcd y x) (cond (equal y 0) x
(gcd y (remainder x y)))))) (gcd 95.5 55))
Double : 0.500000

> quit

Process finished with exit code 0

